UCSB Science Line
Sponge Spicules Nerve Cells Galaxy Abalone Shell Nickel Succinate X-ray Lens Lupine
UCSB Science Line
Home
How it Works
Ask a Question
Search Topics
Webcasts
Our Scientists
Science Links
Contact Information
I have never heard of an event without time passing. If the Big Bang created time and there is no time before the Bang, then the Bang shouldn't even happened, unless there is something special about this event that does not need time to happen.
Question Date: 2011-09-02
Answer 1:

There are many ideas but nothing proved about these basic questions. If one accepts the multiverse idea, there is no way to go from one to the other without going through a singularity and that is impossible. Here is some info from wikipedia:

The multiverse (or meta-universe) is the hypothetical set of multiple possible universes (including the historical universe we experience) that together comprise everything that exists: the entirety of space, time, matter, and energy as well as the physical laws and constants that describe them. The term was coined in 1895 by the American philosopher and psychologist William James. The various universes within the multiverse are sometimes called parallel universes.

Tegmark's classification
Cosmologist Max Tegmark has provided a taxonomy of universes beyond the familiar observable universe. The levels according to Tegmark's classification are arranged such that subsequent levels can be understood to encompass and expand upon previous levels, and they are briefly described below.

Level I: Beyond our cosmological horizonA generic prediction of chaotic inflation is an infinite ergodic universe, which, being infinite, must contain Hubble volumes realizing all initial conditions.

Accordingly, an infinite universe will contain an infinite number of Hubble volumes, all having the same physical laws and physical constants. In regard to configurations such as the distribution of matter, almost all will differ from our Hubble volume. However, because there are infinitely many, far beyond the cosmological horizon, there will eventually be Hubble volumes with similar, and even identical, configurations. Tegmark estimates that an identical volume to ours should be about ten to the ten to the 115 meters away from us (a number larger than a googolplex). By the cosmological principle, one assumes our Hubble volume is not special or unique.

Level II: Universes with different physical constants

"Bubble universes", every disk is a bubble universe (Universe 1 to Universe 6 are different bubbles, they have physical constants that are different from our universe), our universe is just one of the bubbles.

In the chaotic inflation theory, a variant of the cosmic inflation theory, the multiverse as a whole is stretching and will continue doing so forever, but some regions of space stop stretching and form distinct bubbles, like gas pockets in a loaf of rising bread. Such bubbles are embryonic level I multiverses. Linde and Vanchurin calculated the number of these universes to be on the scale of 101010000000.Different bubbles may experience different spontaneous symmetry breaking resulting in different properties such as different physical constants.[4]

This level also includes John Archibald Wheeler's oscillatory universe theory and Lee Smolin's fecund universes theory.

Level III: Many-worlds interpretation of quantum mechanicsHugh Everett's many-worlds interpretation (MWI) is one of several mainstream interpretations of quantum mechanics. In brief, one aspect of quantum mechanics is that certain observations cannot be predicted absolutely. Instead, there is a range of possible observations each with a different probability. According to the MWI, each of these possible observations corresponds to a different universe. Suppose a die is thrown that contains six sides and that the result corresponds to a quantum mechanics observable. All six possible ways the die can fall correspond to six different universes. (More correctly, in MWI there is only a single universe but after the "split" into "many worlds" these cannot in general interact.)[7]Tegmark argues that a level III multiverse does not contain more possibilities in the Hubble volume than a level I-II multiverse. In effect, all the different "worlds" created by "splits" in a level III multiverse with the same physical constants can be found in some Hubble volume in a level I multiverse. Tegmark writes that "The only difference between Level I and Level III is where your doppel gangers reside. In Level I they live elsewhere in good old three-dimensional space. In Level III they live on another quantum branch in infinite-dimensional Hilbert space." Similarly, all level II bubble universes with different physical constants can in effect be found as "worlds" created by "splits" at the moment of spontaneous symmetry breaking in a level III multiverse.[4]

Related to the many-worlds idea are Richard Feynman's multiple histories interpretation and H. Dieter Zeh's many-minds interpretation.

Level IV: Ultimate Ensemble The Ultimate Ensemble hypothesis of Tegmark himself. This level considers equally real all universes that can be described by different mathematical structures. This does not include different low-energy physical laws not of our observable universe. Tegmark writes that "abstract mathematics is so general that any Theory Of Everything (


Click Here to return to the search form.

University of California, Santa Barbara Materials Research Laboratory National Science Foundation
This program is co-sponsored by the National Science Foundation and UCSB School-University Partnerships
Copyright © 2020 The Regents of the University of California,
All Rights Reserved.
UCSB Terms of Use